
Molecular Dynamics
Goal: trajectories x(t) that sample the 
different conformations of the system so that  
we can calculate correct thermodynamic 
observables.
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Molecular Dynamics Algorithm

• equations of motion for N particles
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• potential energy

• forces
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Basic MD program
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initialize()

t=0

while t < tmax

f = forces(r)
r = integrate(r, f)
write_trajectory(r)
t = t + dt



Basic workflow

1. prepare starting conformation

2. run equilibration

3. run production

• compute estimators for observables a(r, v)

• save trajectory (r, maybe v and F)

4. analyse trajectory/output files
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initialize()

t=0

while t < tmax

f = forces(r)
r = integrate(r, f)
write_trajectory(r)
t = t + dt
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Force calculation



Force calculation
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For pair-potentials v(|rj – ri|) = v(rij) 

(Newton’s 3rd law)
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Lennard-Jones Potential
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Integrating the Equations of Motion

initialize()

t=0

while t < tmax

f = forces(r)
r = integrate(r, f)
write_trajectory(r)
t = t + dt



Integrating the Equations of Motion

• have forces Fi and current positions ri(t)

• want: positions ri(t+Δt)
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mir̈i = Fi



Velocity Verlet Integrator

 10

• gives both positions and velocities

• one force evaluation per time step

• see Module 10 ODEs
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Good integrators

• speed? – not very relevant

• accuracy for large time steps Δt

• energy conservation (for ∂H/∂t = 0)
- short term

- long term (more important)

• time reversible (Newton’s EOMs!)

• phase-space area preserving (Hamiltonian dynamics!)

• accurately predict the trajectories of all particles for 
short and long times?
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Good integrators

• speed/memory? – not very relevant

• accuracy for large time steps Δt

• energy conservation (for ∂H/∂t = 0)
- short term

- long term (more important)

• time reversible (Newton’s EOMs!)

• phase-space area preserving (Hamiltonian dynamics!)

• accurately predict the trajectories of all particles for 
short and long times?
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Verlet

• fast, small memory requirements

• not very high accuracy for long time steps

• fair short- and good long term energy 
conservation

• time reversible and area preserving 
(“symplectic”)



Time step

from Leach,  2001

• rule of thumb for Verlet-type integrators: 5 steps per period 
(typically 1-2 fs in biomolecular systems)



Time step

from Leach,  2001
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Thermodynamic observables

• Macroscopic thermodynamic quantities (temperature 
T, pressure P, volume V, particle number N, heat 
capacities, dipole moments, magnetization, …) can be 
written as averages over functions that depend on 
microscopic positions and velocities (“estimator”).
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Energy E
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H: “Hamiltonian” (total instantaneous energy)
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Temperature T
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Pressure P

• pressure can be derived from a version of the 
virial theorem (… another time)

“virial”

PV = NkBT +
w
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Summary

• outline of the MD algorithm

• use of periodic boundary conditions

• potential truncation

• integrators

• calculating macroscopic observables from 
microscopic estimators



Appendix



Small systems: Surface effects

• In a small system, “most” 
particles are “near: the 
surface.

• “near” = typical interaction 
distance d~3σ

• Nsurf/N ~ N–1/3

• Problem when we are 
interested in bulk 
properties.
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Small systems: Periodic boundaries

from Allen & Tildesley, 1987
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Periodic boundaries: Potential Issues

• simulate infinite system so must handle an infinite 
amount of interactions (though often truncation is 
permissible)

• spurious correlations/ordering

• only fluctuations allowed with lattice periodicity, 
and max wavelength λ=L

➡ phase transitions with long wavelength 
fluctuations problematic

• non-isotropic pair distribution function

... but generally works rather well!



Periodic boundaries: Interactions

• pair wise v(rij) ~N2

• minimum image 
convention

• truncation at 
cutoff Rc  

v(r) must fall off 
faster than r–3 

Rc < L/2 

from Allen & Tildesley, 1987 25



Truncation of potentials

• simple truncation

• truncation and shift

• minimum image convention

(proper periodic treatment: advanced topic)

utrunc(r) =

⇢
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0 r > Rc
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Periodic boundaries: Cells

truncated octahedron
(0.77 d3)

rhombic dodecahedron
(0.71 d3)

+ cube/parallel epiped (d3)
+ hexagonal prism
+ elongated rhombic dodecahedron
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Periodic boundaries: Tail correction

from Allen & Tildesley, 1987
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Verlet Integrator
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• no velocities needed

• same accuracy as velocity Verlet

• velocities can be computed (but O(Δt2))
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