
Finals Projects Symposium
ASU PHY494 Computational Methods in Physics (Spring 2016)

Arizona State University, Department of Physics
Room PSH 355

Thursday May 5, 2016, 11:30am–2pm

1 Posters

title authors

1 ATLAS Bobby Hackett, Jordan Pagni, Alex Warren
2 Billiard Simulation Nathaniel Soderberg, Nik O’Brien, Kit Wing Fung
3 Blackjack Card Counting

Simulation
Ryan Heilman, Layne Bradshaw, Jacob Dwyer

4 Digital Signal Processing
Techniques in Python

Charles E. Fortune, Skyler J. Hugo, Trevor Van Engel-
hoven

5 Replicating results of 2016
March Madness Tourna-
ment

Bryan Katterman, Alejandro Martinez

6 Rendezvous with Rama:
Ramageddon!

Jordan Boyd, Ashley Mascareno, Andy Winhold

7 Stern-Gerlach Simulation Andrew Durkiewicz, Nate Simon, and Greg Vetaw

2 Procedures

Mount your poster on the provided poster board and attach the number assigned to you
(see table above). At the end of the symposium, return all mounting materials and take
your poster with you.

Note that the instructor might take pictures of the posters as an additional record for
grading purposes.

1

2.1 Q&A

• Each member of the team will be asked to engage in an individual Q&A with the
instructor in front of the poster of about 6 minute duration. The Q&A will be graded
and be part of the final grade.

• The TAs will also ask questions and report their assessment to the instructor. How-
ever, they will only report positive evaluations, i.e., you cannot make your grade
worse by talking to a TA.

• If you are not engaged in a Q&A then you are free (and encouraged) to look at other
posters.

2.2 Poster prize

Participants will be able to vote for the best poster. Ballots will be provided: rank order the
top three posters and drop your ballot into the collection container. The winning team will
be awarded a prize.

3 Abstracts

Abstracts1 are listed in the order of appearance in the program.

#1 • ATLAS • Bobby Hackett, Jordan Pagni, Alex Warren
https://github.com/ASU-CompMethodsPhysics-PHY494/final-atlas-mission

Our goal was to model the trajectory of a spacecraft, ATLAS, as it made its way to Sat-
urn’s moon Titan, on a journey of astrobiological exploration. The first step was to simulate
a dynamic solar system of seven massive bodies that interact gravitationally. Each body
is given an initial position and velocity–relative to the Sun at the origin–using values from
real astronomical data. The positions of each body are calculated as a function of velocity,
which itself depends on the force of gravity between bodies. Using a for loop, we iterate
through a predetermined number of timesteps–updating the current positions, velocities,
and gravitational forces. Once the solar system was complete, we added ATLAS. The
spacecraft behaves just like any other body, but with an initial mass, position, and veloc-
ity, that are based on both real and hypothetical space exploration missions. Through
careful analysis of many ATLAS trajectory simulations, we were able to project initial con-
ditions that lead to a successful intercept with Titan. We didn’t fulfill all of our hoped for

1The 200-word limit to the abstract text is indicated by graying out any text beyond the limit. For a real
conference, your abstract would have been truncated or rejected by the submission system.

2

objectives, but with more time, the ATLAS mission would have: placed ATLAS in a stable
orbit in the Titan-Saturn system, utilized gravity assist maneuvers, and calculated the fuel
expenditure on route.

Code is available under the MIT LICENSE.

#2 • Billiard Simulation • Nathaniel Soderberg, Nik O’Brien, Kit Wing Fung
https://github.com/ASU-CompMethodsPhysics-PHY494/final-billiard-simulation

The Problem - Billiards is a game that has its roots buried in physics and geometry. How-
ever, human players are doomed to sometimes fail. Therefore the purpose of this simu-
lation is to have a computer deduce the most efficient shot given an initial setup of balls.
In the development of this code certain problems arose such as; implementing the holes,
removing balls that fell in these holes, handling collisions, and coding the visuals.

The Approach - To simplify the simulation, python objects were created to easily call
the balls and table in the program. Friction was also neglected and only five balls were
observed, starting in predetermined positions. The program runs in a series of steps that
starts by recording each ball’s position. Balls are moved based on velocity, remove balls
if needed, and then update positions based on collisions.

The Results - Because efficiency is the goal, the program gives amount of time and
number of balls left on the table as outputs. If a certain shot angle results in all of the balls
being holed in the shortest amount of time that angle is declared the most efficient angle.

Conclusion - With this program the computer can find the best shot given certain pa-
rameters.

#3 • Why we are Dropping out of College: AKA Blackjack Card Counting
Simulation • Ryan Heilman, Layne Bradshaw, Jacob Dwyer
https://github.com/ASU-CompMethodsPhysics-PHY494/final-card-counting-simulation

The purpose of this project was to determine not only whether or not card counting in the
game of blackjack is a viable strategy, but what a successful betting scheme would look
like. The major hurdles that needed to be overcome for a success was the implementation
of code that could simultaneously run a card game, while keeping the card count, and
solving the math required given by the High-Lo counting system. This was accomplished
via object oriented programming that would set up a game with players and determine
whether or not to hit/stay and how much one should bet according to the cards and rules
that were provided. The simulation was successful in the sense that we found betting
patterns with net gains, while others produced large losses in a players bankroll. With
over 1000 simulations run, we found, for the most part, that more conservative patterns
led to larger overall gains. For example, a strategy with wagers ranging from $145–$165
led to an annual income between $250,000 and $350,000 per year.

Code is available under the MIT License.

#4 • Digital Signal Processing Techniques in Python • Charles E. Fortune,
3

Skyler J. Hugo, Trevor Van Engelhoven
https://github.com/ASU-CompMethodsPhysics-PHY494/final-digital-signal-processor

Digital signal processing written in Pure Python designed to generate and foremost
manipulate waveforms for audio design purposes. The modern music industry revolves
heavily around digital audio-mixing, and this project ventures into this realm by construct-
ing what is colloquially known as an effects processor comparable to those seen in use
across the music industry. Ideally, this system could be expanded upon given proper time
and funding to increase overall fidelity quality and effect variety (in the form of improved
hardware and code optimisation) Primary coding methods can be broken down into three
immediate segments of design: function generation, effect processing in a Python envi-
ronment, further output as audible noise utilising Raspberry Pi interface. The results are
promising, with outcomes extending well beyond initial forecasted success projections.
Working Python code (though not optimised) wrapped through a Raspberry Pi output-
system produces desired effect-processing with little to no audio latency and justifiable
loss in overall audio fidelity. This project serves as a stable proof-of-concept for the further
development of Python as an audio effects-processor. The research team has concluded
that further investment in project-development will likely yield further positive results.

#5 • Replicating results of 2016 March Madness Tournament • Bryan
Katterman, Alejandro Martinez
https://github.com/ASU-CompMethodsPhysics-PHY494/final-march-madness

Correctly predicting the odds of all 63 games of the March Madness tournament if rele-
gated to just pure random chance, are 1 in 9,223,372,036,854,775,808 (over one in nine
quintillion). Our goal for this project was to create a Monte Carlo model to predict the
outcome of the 2016 NCAA March-Madness tournament and compare our results with
industry claimed predictive standards. We accomplished this by collected statistics on the
outcomes of the previous 35 years of tournaments in conjunction with the statistics from
the 2016 participating teams and created a Monte Carlo model using basic Bayesian in-
ference. The two biggest hurdles for this project have been: a) the time consuming nature
of gathering and analyzing statistics to build an accurate model and b) trying to find in-
dustry hints toward what accurate prediction algorithms look like. The latter is something
the sports and gaming industries rarely disclose and as an outsider, we had to create our
own predictive equations. Overall, we achieved our goal of creating a predictive model
using team statistics, however our results were fairly inaccurate. Our model was able to
correctly predict the winner of the tournament at a rate of 1 in 32, and the 2 teams that
made it to the championship games at a rate of 1 in 270, which are odds about twice and
four times better than chance respectively. Future work will include updating our model
with more robust statistics to improve accuracy and research player stats to feed into the
model.

4

Code is available under the Apache 2.0 License.

#6 • Rendezvous with Rama: Ramageddon! • Jordan Boyd, Ashley Mascareno,
Andy Winhold
https://github.com/ASU-CompMethodsPhysics-PHY494/final-rendezvous-with-ramageddon

Near earth objects (NEOs) and the devastation they have caused Earth in the past
continues to pose risks in the future. Should an extrasolar object following a hyperbolic
trajectory graze too close to Earth, determining whether the Earth is on a potential collision
course is vital. Inspired by Arthur C. Clarkes “Rendezvous With Rama”, this Python-based
simulation reenact the hyperbolic orbit of extrasolar object Rama, a 50km long, cylindrical
alien starship on a trajectory through the inner solar system passes. The simulation sce-
nario imagines what kind of threat Rama may pose if it was a bit closer to Earth. Using
Newtonian and Keplerian orbital mechanics coupled with the velocity verlet algorithm, the
simulation computes the positions and velocities to make predictions about the orbits of
Mercury, Venus, Earth, Mars, and Rama from a heliocentric frame of reference. The pre-
diction for the velocity Rama needed to maintain a hyperbolic orbit was found to be 41.7
km/s, and the smallest distance between Earth and Rama for the duration of the trajectory
was found to be 39,127 km. The eccentric anomalies for the inner planets were found to
converge at tolerance 1e-5.

#7 • Stern-Gerlach Simulation • Andrew Durkiewicz, Nate Simon, and Greg Vetaw
https://github.com/ASU-CompMethodsPhysics-PHY494/final-stern-gerlach-simulation

In 1922 Otto Stern and Walther Gerlach confirmed that microscopic particles have a
quantized intrinsic degree of freedom called spin angular momentum when they sent a
beam of sliver atoms through an inhomogeneous magnetic field. Since silver atoms have
an extra electron in the 5s orbital, the result showed that the spin of the electron is ±h̄/2.
Thus, for this project we sought out to simulate the Stern-Gerlach experiment by using
the finite difference method with a Gaussian wavepacket implemented in Python. We also
wished to reconstruct the results of the experiment in the classical limit where the states
of the electron were assumed to be a continuous band symmetric about the axis where
the beam splits. The major hurtle that was encountered was trying to get the states to split
and discretize in a manner that made sense for both the classical limit and the quantum
limit. The results that were obtained in the semi-classical limit showed that when electrons
exit the magnetic field they can populate any state that is symmetric about their initial axis
of motion between ±h̄. The quantum result showed an interference distribution that was
heavily peaked about the initial axis of motion which differed from the classical result. For
future work we are anticipating simulating the experiment by using the Crank-Nicolson
method.

Code is available under the CC0 license.

5

